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ABSTRACT
Self-supervised contrastive learning has achieved promising re-
sults in computer vision, and recently it also received attention
in the medical domain. In practice, medical data is hard to col-
lect and even harder to annotate, but leveraging multi-modality
medical images to make up for small datasets has proved to be
helpful. In this work, we focus on mining multi-modality Magnetic
Resonance (MR) images to learn multi-modality contrastive rep-
resentations. We first present multi-modality data augmentation
(MDA) to adapt contrastive learning to multi-modality learning.
Then, the proposed cross-modality group convolution (CGC) is
used for multi-modality features in the downstream fine-tune task.
Specifically, in the pre-training stage, considering different behav-
iors from each MRI modality with the same anatomic structure,
yet without designing a handcrafted pretext task, we select two
augmented MR images from a patient as a positive pair, and then di-
rectly maximize the similarity between positive pairs using Simple
Siamese networks. To further exploit multi-modality representation,
we combine 3D and 2D group convolution with a channel shuffle
operation to efficiently incorporate different modalities of image
features. We evaluate our proposed methods on liver MR images
collected from a well-known hospital in Taiwan. Experiments show
our framework has significantly improved from previous methods.
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Figure 1: An illustration of self-supervised learning formulti-
modality MR images. We randomly select two images from
a patient as positive pairs and pass them to the SimSiam
networks. sg indicate the stop gradient operation.
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1 INTRODUCTION
MRI analysis is crucial for liver cancer diagnosis, where cancer
stages are classified into four levels1. Traditional MR images can
help identify the third or fourth stage visually, but distinguishing
the first and second stages is challenging due to subtle and illegi-
ble features. Our goal is to propose a machine learning approach
that utilizes multi-modality MR images (e.g., T1-weighted or Out-
of-phase images) to accurately classify the pathological stage of

1https://www.cancer.org/cancer/liver-cancer/detection-diagnosis-
staging/staging.html
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Figure 2: An illustration of the proposed overall architecture. The self-supervised pre-trained model serves as a multi-modality
encoder. In the downstream task, we use the CGC layer by combining Conv1 and Conv2 block to incorporate multi-modality
features.

liver cancer, assisting doctors in diagnosis. Various modalities of
MR images depict the same anatomical structure differently. For
instance, edema appears hyperintense in T2-weighted images and
hypointense in T1-weighted images. Similarly, abnormal fat accu-
mulation exhibits hypointensity in Out-of-phase imaging. Deep
learning has shown promising results in medical tasks such as clas-
sification, object detection, and segmentation [1, 5, 8, 18, 19, 22, 25],
but acquiring labeled medical data is challenging due to the need
for expert inspection and annotation. To address this limitation, we
propose using multi-modality MR images as a feasible solution to
compensate for inadequate datasets.

Multi-modality learning in the medical domain has been exten-
sively explored. One approach involves jointly training assistant-
modality and target-modality images, while another uses transfer
learning by pre-training assistant-modality images and fine-tuning
target-modality images. However, these methods do not effectively
leverage cross-modality information. Previous studies [18] have
shown poor performance in joint training and transfer learning due
to significant appearance discrepancies, making it challenging to
learn cross-modality features directly from multi-modality images.

Self-supervised contrastive learning has gained significant at-
tention in the medical domain [1, 21] for learning effective visual
representations [2, 4, 7]. Contrastive learning requires data aug-
mentation to produce different views of training examples, enabling
the extraction of effective representations through maximizing the
agreement between positive pairs [27]. In this work, our aim is to
learn representative multi-modality features from MR images in an
unsupervised manner. Inspired by prior works, we propose multi-
modality data augmentation (MDA) to adapt contrastive learning
for multi-modality learning. By considering MR images as different

views of a naive anatomic representation, MDA maximizes agree-
ment between augmented MR images’ features, enabling the extrac-
tion of effective contrastive representations from multi-modality
data.

In this paper, we propose a self-supervised pre-trained multi-
modality encoder for the downstream supervised task. Our goal is
to enhance model robustness by exploiting representative multi-
modality features. Tseng et al. [25] introduced 3D cross-modality
convolution (CMC) to leverage different modality features fromMR
images. However, the high computation cost of 3D convolution is
detrimental for small datasets. To address this, we present a light-
weight solution called cross-modality group convolution (CGC),
combining 3D and 2D group convolution [17]. This approach allevi-
ates the dense 3D convolution cost while maintaining the benefits of
cross-modality features. We also employ a channel shuffle operation
after each cross-modality convolution layer to enhance information
flow within groups, inspired by [29].Our dataset, collected from a
Taiwan hospital, includes 88 stage-one and 50 stage-two patients,
each with three MR image types: T1-weighted, T2-weighted, and
Out-of-phase images. We thoroughly evaluate our framework in
small dataset settings and demonstrate its effectiveness in liver
cancer classification. Our major contributions can be summarized
as follows:

• We present an effective and efficient training framework to
classify the pathological stage of liver cancer from multi-
modality MR images, which can assist doctors in disease
diagnosis.
• We propose multi-modality data augmentation, an effective
approach to adapt contrastive learning into multi-modality
learning.
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• We introduce a lightweight fusion scheme for multi-modality
features by combining cross-modality group convolution and
the channel shuffle operation.
• The proposed framework can leverage multi-modality data
to further enhance the robustness of the model both in the
pre-training and fine-tuning stage.

2 RELATEDWORK
Contrastive Learning
Contrastive learning has shown promising results in computer
vision [3, 4, 7], where positive pairs of latent features should be
similar and negative pairs dissimilar [2, 27]. BYOL and SimSiam are
effective Siamese architectures in contrastive learning [3, 4, 7], with
BYOL also resilient to batch size and data augmentation changes.
However, in single-modality scenarios, positive pair construction
often relies on random augmentations of the same view, limiting
the model’s ability to incorporate mutual information between
modalities.

In video representation learning, positive pairs are selected from
adjacent frames [24], and MOCO is adapted for chest X-ray detec-
tion [21]. Various strategies for positive pair selection have been
explored [1, 24, 26]. We address the multi-modality scenario and
improve pre-training methods by using MDA to adapt contrastive
learning for learning multi-modality representations. While in-
spired by previous works [1, 22], we also further leverage con-
trastive representations during fine-tuning.

Multi-modality Learning
Several works apply the generative adversarial network (GAN) [6]
to multi-modality learning. For example, Jiang et al. [12] uses GANs
to generate synthetic data as augmented data for joint training. Li
et al. [18] propose an image align module to fill the appearance gap
between modalities and make use of cross-modality information to
assist segmentation tasks on target-modality via knowledge distilla-
tion. This work explores the prior knowledge of assistant-modality
to enhance the performance on target-modality, while we aim to
learn multi-modality representations jointly and further exploit
multi-modality features to boost the overall effectiveness. Tseng et
al. [25] adapt a dense 3D convolution layer with a convolutional
LSTM to model multi-modality features and sequence slices. To
incorporate local and global features, Kamnitsas et al. [14] propose
multi-scale 3D CNN with a dual pathway structure. Fidon et al.
[5] present a nested structure, which is scalable to the number of
input modalities to leverage multi-modality features. Guo et al. [8]
analyze different fusion schemes for multi-modality images and
demonstrates that feature fusion at the feature level is superior
to the decision-making level and the classifier level. The studies
mentioned above focus on the design of the feature extractor or
different schemes of the feature fusion structure. However, we pro-
pose to use the self-supervised model as a weight-sharing feature
extractor. Finally, we adopt an efficient and effective feature fusion
strategy for the contrastive multi-modality features.

3 METHODOLOGY
In line with practices in natural language processing and computer
vision, we adopt a self-supervised model to leverage structural

Algorithm 1 Multi-modality Contrastive Learning
Input: Patients sets D and batch size 𝑁
Augmentation and preprocessing functions T
Networks of 𝑓 , 𝑔, ℎ
Stop gradient operation 𝑠𝑔

while not converge do
B ← {𝑝𝑖 ∼ D}𝑁𝑖=1
# sample minibatch of patients
for 𝑝𝑖 ∈ B do
𝑡 ∼ T and 𝑡 ′ ∼ T
# draw transformations
draw positive pairs 𝑥1 ∼ 𝑝𝑖 and 𝑥2 ∼ 𝑝𝑖
𝑥 ′1 = 𝑡 (𝑥1) and 𝑥 ′2 = 𝑡 ′ (𝑥2)
𝑞1 ← 𝑔(𝑓 (𝑥 ′1)) and 𝑞2 ← 𝑔(𝑓 (𝑥 ′2))
# projections
𝑧1 ← ℎ(𝑞1) and 𝑧2 ← ℎ(𝑞2)
# predictions
define D(𝑧, 𝑞) as D(𝑧, 𝑞) = 2 − 2 · 𝑧 · 𝑞

∥𝑧∥2 · ∥𝑞∥2
# mse loss
ℓ𝑖 ← D(𝑧1, 𝑠𝑔(𝑞2)) + D(𝑧2, 𝑠𝑔(𝑞1))

end for
L = 1

𝑁

∑𝑁
𝑘=1 ℓ𝑖

update networks 𝑓 , 𝑔 and ℎ to minimize L
end while
return networks 𝑓 , 𝑔

information between MR images. Siamese networks facilitate effec-
tive visual representation learning during pre-training, as seen in
successful methods like [4, 7].

During fine-tuning, the pre-trained model serves as a weight-
sharing multi-modality encoder, leading to significant reductions
in parameters and computation costs. We propose further utilizing
multi-modality features with a lightweight cross-modality convo-
lution in the downstream task (see Fig 2).

3.1 Multi-modality Contrastive Learning
Inspired by SimSiam architecture, our pre-train flow is shown in
Figure 1. The proposedmulti-modality data augmentation can apply
to various contrastive learning architectures, such as SimCLR and
BYOL. Multi-modality data augmentation increases the difficulty of
the pretext task and encourages the model to learn a cross-modality
representation. We randomly select two MR images 𝑥1 and 𝑥2 from
a patient as positive pairs. Since different modalities have different
image statistics (e.g., mean or standard deviation), we apply stan-
dard normalization for each modality. We then take two random
augmentations for two samples. The augmented images 𝑥 ′1 and 𝑥

′
2

will be encoded by the same encoder 𝑓 and projector 𝑔, which are
𝑞1 ≜ 𝑔(𝑓 (𝑥 ′1)) and 𝑞2 ≜ 𝑔(𝑓 (𝑥 ′2)) respectively. The predictor ℎ
will project 𝑞1 to map to its positive pair 𝑞2, in which 𝑧1 ≜ ℎ(𝑞1).
Finally, we minimize the mean square error between two normal-
ized vectors 𝑧1 and 𝑞2 [7], where 𝑧1 ≜ 𝑧1/∥𝑧1∥22 and 𝑞2 ≜ 𝑞2/∥𝑞2∥22,

D(𝑧1, 𝑞2) = ∥𝑧1 − 𝑞2∥22 = 2 − 2 · 𝑧1
∥𝑧1∥2

· 𝑞2
∥𝑞2∥2

(1)
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Figure 3: An illustration of the proposed overall architecture. The self-supervised pre-trained model serves as a multi-modality
encoder. In the downstream task, we use the CGC layer by combining Conv1 and Conv2 block to incorporate multi-modality
features.

Symmetrized the loss [7] by swapping the input images to corre-
sponding networks, we define symmetrized loss as:

L = D(𝑧1, 𝑞2) + D(𝑧2, 𝑞1) (2)

To prevent collapsing to trivial solutions (e.g., the network produces
the same output for all images), the stop-gradient operation [4] is
added to the right side of the pre-trained flow in Figure 1:

L = D(𝑧1, 𝑠𝑡𝑜𝑝𝑔𝑟𝑎𝑑 (𝑞2)) + D(𝑧2, 𝑠𝑡𝑜𝑝𝑔𝑟𝑎𝑑 (𝑞1)) (3)

The stop gradient operation will treat the corresponding valueas
a constant. Thus, no gradient will backpropagate along with the
corresponding value. This operation is a central component of
networks to prevent collapse solutions. At the end of the training,
the networks 𝑓 and 𝑔 are returned for downstream use.

3.2 Cross-modality Group Convolution
In this section, we introduce how to aggregate multi-modality rep-
resentative features. Inspired by the work [25], we propose a light-
weight cross-modality group convolution (CGC) to make efficient
use of multi-modality features. The overall architecture is shown
in Figure 3, the strategy of feature fusion focuses on information
flow between or within channels of the multi-modality feature map.
Specifically, we have three kinds of images for each patient, and
each image will be encoded in a feature map of size 𝐶 × 𝐻 ×𝑊 .
Following the similar idea from the work [25], we stack together the
same channels of different modalities features, in which the feature
size is𝐶 × 3×𝐻 ×𝑊 . We then perform 3× 1× 1 group convolution
followed by three layers of 1× 1 group convolution (which is called
pointwise group convolution [29]). Group convolution was first
introduced in AlexNet [17] for distributed training. Here, the group
convolution is used to reduce computation cost by ensuring each
convolution of a group operates only in the corresponding channels.

However, this design decreases the number of information flows
across groups since the input of a certain group is only connected to
the output of a certain group. To enhance communication between
channel groups, the channel shuffle operation [29] is applied to
each output of the group convolution layer. This is implemented by
reshaping the channel dimension to 𝑔×𝑛, in which 𝑔 is the number
of groups and 𝑛 is the number of group channels. The output chan-
nel dimension is then transposed and flattened, and is finally input
into the next convolution layer. This operation is differentiable
and can be embedded in networks. Group convolution layer with
channel shuffle allows more feature map channels, and is crucial
for efficiently aggregatating the multi-modality feature map.

4 EXPERIMENTS
4.1 Datasets and Experimental settings
Our dataset comprises three MRI modalities: Out-of-phase, T2-
weight, and T1-weight imaging, each representing a transverse
section of the thoracic cavity. Collected from a hospital in Taiwan,
it consists of 414 MR images from 138 patients, with 88 at stage
one and 50 at stage two. All MR images are liver region segmented.
Inspired by the effectiveness of ImageNet pre-trained models in the
medical domain [1, 15], we use ImageNet pre-trained weights in
all our experiments. Pre-training and fine-tuning stages share the
same preprocessing methods but differ in data augmentation. The
choice of data augmentations significantly affects contrastive learn-
ing effectiveness [2, 7]. To improve the quality of representations,
the pretext task should be challenging [2]. We employ SimCLR with
random cropping and color jitter to prevent shortcut exploitation
in pretext tasks, while SimSiam and BYOL are receptive to combina-
tions of data augmentations. Although random cropping may alter
image labels in the medical domain, our focus is on capturing the
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Table 1: Linear evaluation results on various pre-training methods. Multi-modality data augmentation (MDA denoted as +) is
applied in SimCLR, BYOL, and SimSiam. The values are averaged from different random seeds and reported in %.

Out T2 T1

Methods Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

SimCLR 64.22 52.09 46.80 48.41 62.72 50.14 44.67 46.46 62.12 49.52 43.20 45.44
SimCLR+ 65.95 54.37 47.14 49.10 64.20 50.18 45.20 46.88 64.02 52.53 48.00 49.03
BYOL 66.44 55.52 48.29 50.52 66.76 54.34 49.33 51.27 65.48 52.54 49.60 50.60
BYOL+ 67.73 55.91 57.14 55.63 68.28 58.29 53.71 54.86 66.88 58.86 51.33 51.16
SimSiam 66.87 54.95 53.20 53.37 65.17 53.85 47.20 48.26 63.06 51.21 45.60 47.56
SimSiam+ 68.88 57.95 54.36 55.34 67.47 55.23 52.91 53.51 66.57 55.31 52.73 53.09

relationship between modalities during pre-training, evaluating on
the liver cancer classification task.

For evaluation, we use five-fold cross-validation with five differ-
ent random states to assess stability with varied data combinations.

4.1.1 Implementation details for pretraining. We use EfficientNet-
B2 [23] without multi-layer perceptron (MLP) as our base encoder.
The weight of the encoder is initialized by ImageNet pre-trained.
The projector consists of a global average pooling layer with di-
mension 1,408 and a 2-layer of MLP with hidden size 1,792 and
output size 256. Batch normalization (BN) [11] and sigmoid Linear
Unit (Swish) [20] have been applied to hidden layers. The predictor
is a 2-layer multi-layer perceptron (MLP) with the same architec-
ture as the projector, except for the global average pooling layer.
Using the idea in [7], the output of both predictor and projector are
not batch normalized. Data augmentation is applied in this stage,
and technologies include color jitter, random crop, horizontal and
vertical flip. All images are resized to 200 × 200 for training. We
apply distinct mean and standard deviation for normalizing each
modality. The mean value is set to 0.2962, 0.2055, and 0.2000 for T1
HB, T2, and out modality respectively. The standard deviation is
set to 0.2527, 0.1727, and 0.1644 for T1 HB, T2, and out modality
respectively. For smaller images, zero-padding is used instead of
interpolation [9]. We use Adam optimizer for pre-training over 12
epochs. The initial learning rate is set to 3 · 10−4 with batch size 32.

4.1.2 Implementation details for CGC. Swish and BN have been
applied to all group convolutions layers before the channel shuf-
fle operation. Using the idea from previous works [10, 29], the
shortcut connection is inserted between every two consecutive
convolution blocks. The number of groups for all convolutions lay-
ers is set to 8. Global average pooling and an MLP are performed
after multi-modality feature fusion. The input dimension of MLP is
1,408 with a dropout rate of 0.3. We use Adam optimizer to train
over 10 epochs. The initial learning rate is 1 · 10−4 with a linear
warm-up period of 50 steps, and the batch size is 16. In this stage,
our data augmentation includes color jitter, random rotation, and
random flipping. The images are resized or padded to 200 × 200.
Normalization is performed after the data augmentation. We em-
phasize that the multi-modality data augmentation can create a
more comprehensive view of images.

Table 2: Semi-supervised training with different weight ini-
tializations using SimSiam architecture for single-modality
(SCL) and multi-modality contrastive learning (MCL). Aver-
aged results from 5 different random seeds. (±denotes stan-
dard deviation)

Out T2 T1

Methods Acc F1 Acc F1 Acc F1

ImageNet 67.51 ±1.16 54.11 ±2.46 65.27 ±1.43 55.42 ±2.05 66.53 ±1.69 52.24 ±1.16
SCL 69.07 ±1.22 58.13 ±2.81 67.43 ±1.71 55.51 ±1.41 67.55 ±1.24 55.04 ±2.14
MCL 72.02 ±1.98 62.81 ±1.93 70.26 ±0.68 58.83 ±2.66 69.86 ±0.57 58.14 ±2.27

4.2 Linear evaluation
Following the widely used evaluation procedure [2, 7, 16, 28], we
evaluate the generalization capability of the self-supervised pre-
trained model. Specifically, we train a linear classifier on the top
of the frozen base network to classify liver cancer. The network
consists of the base encoder 𝑓 and projector 𝑔, which are jointly
pre-trained with three types of MR images using MDA. Without
MDA to incorporate MR images, the network will be trained sepa-
rately on each type of MR images, relying on data augmentation
to form positive pairs. To assess the impact of multi-modality in-
formation incorporation, we adopt three methods to measure the
impact of MDA, including SimCLR, BYOL, and SimSiam. The cross-
validation results, which are averaged from different random seeds
and shown in Table 1. The result of SimCLR reports that its ar-
chitecture critically depends on a large batch size [2], which has
deteriorative performance according to our experiment. With MDA
applied to each architecture, the linear evaluation results show that
representation quality will be improved when including all kinds of
MR images. We conclude that the pre-trained encoder with MDA
benefits from the shared information across multi-modality MR
images.

4.3 Semi-supervised learning
To further evaluate the learned representations, we access the per-
formance when fine-tuning the self-supervised model on liver can-
cer classification. Here, the architecture of networks is the base
encoder 𝑓 and projector 𝑔 pre-trained from SimSiam networks and
an extra MLP. The base encoder is pre-trained from MR images of
all patients with MCA and pre-trained from a single modality of
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Figure 4: Class activation heat map on three types of MR images under different trainedmodels. We compare the model between
the (a) Pre-trained MCL, (b) Fine-tuned MCL, and (c) Fine-tuned MCL with CGC.

all patients with SCA. In the fine-tuned stage, we split the dataset
according to patient ID. We compare the representations quality
trained from single-modality contrastive learning (SCL) to multi-
modality contrastive learning (MCL). The fine-tuned results on
three types of MR images are shown in Table 2. The accuracy of
fine-tuned SCL is greater on three modalities (1.56% for Out-of-
phase images, 2.16% for T2-weighted images, and 1.02% for T1-
weighted images) than supervised pre-training on ImageNet. This
is consistent with previous studies in the medical domain [1, 15, 26].
These results are attributed to self-supervised pre-training in the
task-specific unlabeled data that can bridge the domain discrepancy.
Besides, the MCL model improves more on three types of MR im-
ages, improving the accuracy of SCL with 2.95% for Out-of-phase
images, 2.83% for T2-weighted images, and 2.31% for T1-weighted
images. We conclude that the fine-tuned MCL model can bene-
fit from cross-modality information and has better generalization
ability. Finally, we evaluate the performance obtained from CGC
trained on top of base encoder 𝑓 . Experimental results are reported
in Table 3. In this stage, the ImageNet pre-training followed by
multi-modality contrastive learning (MCL) is our weight initializa-
tion method. Compared to the previous works [1, 26], which focus
on the pre-training strategy, we further exploit the representative
features learned from different imaging modalities using the pro-
posed CGC. The results show the significant improvement of CGC
by leveraging cross-modality information. The CGC improves the
accuracy on Out-of-phase, T2-weight, and T1-weight images with
4.78%, 6.54%, and 6.94%, respectively. For both the linear evaluation
and fine-tuning stage, MCL performs better than SCL, since MCL
can learn meaningful multi-modality representations. Moreover,
we propose that the incorporation of different multi-modality im-
ages can improve the quality of representations. Our experiment
verifies that the proposed CGC can further capture cross-modality
information and boost the robustness of the classification.

Additionally, to demonstrate the effectiveness and efficiency of
the proposed CGC compared to the cross-modality convolution
(CMC)[25], we conduct an experiment to compare the classifica-
tion performance and complexity between CMC and CGC, and the
averaged results from different random states are shown in Table
4. Under the same pre-trained method and the base encoder, the

Table 3: Comparison of fine-tuned MCL performance with
andwithout cross-modality group convolution (CGC) on each
type of MR image. Averaged results from 5 different random
seeds. (±denotes standard deviation)

Methods Acc Pre Rec F1

MCL + Out 72.02 ±1.72 62.71 ±3.28 67.18 ±3.14 62.81 ±1.93
MCL + T2 70.26 ±0.68 58.85 ±4.58 63.10 ±3.57 58.83 ±2.66
MCL + T1 69.86 ±0.57 60.06 ±1.80 60.89 ±5.56 58.14 ±5.28
MCL + CGC + ALL 76.80 ±1.40 71.11 ±5.16 70.59 ±2.63 67.82 ±1.59

Table 4: Performance and Complexity comparison

Methods Acc F1 Params Flops

CMC 74.31 66.04 13.69M 1.29B
CGC 76.80 67.82 9.19M 1.07B

accuracy degraded by 2.49% when replacing the CGC to CMC. We
demonstrate that both the classification performance and complex-
ity of our method can outperform previous methods in liver cancer
classification. Within the desired computation budget, CGC allows
more feature map channels which can aggregate multi-modality
information and is invaluable for small datasets.

4.4 Visualization
To explain the result, we visualize the class activation maps on liver
MR images using LayerCAM [13] shown in Figure 4. LayerCAM can
generate more fine-grained object localization information from the
class activationmaps, using the gradients to highlight the important
region in the feature map. The level of importance from high to
low is in the following order: blue, green, red. We choose the 11th
convolution block of the trained base encoder as our target layer
and visualize pathological stage two for the target class. We note
that the MCL pre-trained model still has lots of noise. After fine-
tuning, the model tends to highlight the specific position. The final
results of MCL with the CGC layer demonstrate the effectiveness
of our idea. The class activation map shows less noise since our
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method can aggregate the cross-modality information. Moreover,
our model concentrates on the underlying pathological locations.
We conclude that the CGC can incorporate cross-modality features
to enhance the robustness of the model.

5 CONCLUSIONS
In this work, we introduce an effective and efficient training frame-
work based on contrastive learning for liver cancer classification.
We present multi-modality data augmentation as a simple approach
to adapt contrastive learning into multi-modality learning. More
importantly, we exploit the representative multi-modality features
by using a lightweight cross-modality group convolution to inte-
grate multi-modality information. For practical purposes, we also
visualize the model to help the doctor comprehend themodel predic-
tion. Experimental results on datasets collected from the real-world
demonstrate the effectiveness of our methods.
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